r age r or

Depth Filter Type YG

The depth filter for the removal of water, oil aerosols and solid particles from compressed air and gases with validated retention rate acc. ISO 12500-1 and ISO 5011.

Product description:

The filter elements type YG are designed for the processing of compressed air or gases in industrial applications.

Validated performance data acc. to ISO 12500-1 for reliable achievement of compressed air quality suitable due to the application acc. to ISO 8573-1.

The filter elements type YG possess the three-dimensional micro fibre fleece made of polyester, which works oil and water-rejecting.

By utilising various filtration mechanisms such as retention by direct impact, sieveeffect and diffusion effect, liquid aerosols and solid particles are being retained in the filter.

The depth filter is for example being utilised in the following industries:

- Pre-filtration upstream fridge and adsorption dryers
- Pre-filter for the removal of larger amounts of liquids
- Applications with expected high particle intake
- After-filter downstream adsorption dryers

Depth filter type YG

Element Type	Flowrate at 7 bar g m³/h [*]	
02/05	20	
03/05	40	
03/10	60	
04/10	90	
04/20	120	
05/20	180	
05/25	270	
07/25	360	
07/30	480	
10/30	720	
15/30	1080	
20/30	1440	
30/30	1920	
30/50	2880	

Sizing example for pressure which deviates from nominal pressure:

 \dot{V}_{nom} = 330 m³/h, operating pressure = 9 bar (g)

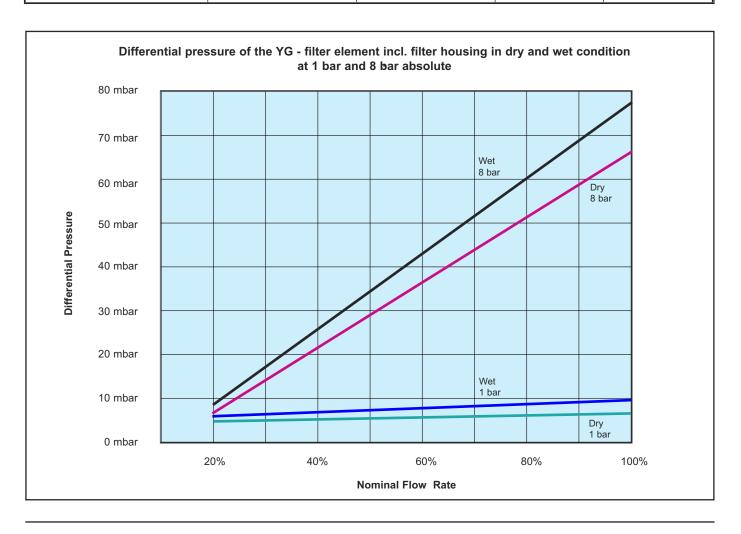
$$\dot{V}_{corr} = \frac{\dot{V}_{nom}}{f_p}$$

$$V_{corr} = \frac{330 \text{ m}^3/\text{h}}{1.25} = 264 \text{ m}^3/\text{h}$$

Calculated Size: Type 05/25

Operating Pressure bar g	Pressure conversion factor fp			
1	0.25			
2	0.38			
3	0.50			
4	0.63			
5	0.75			
6	0.88			
7	1.00			
8	1.13			
9	1.25			
10	1.38			
11	1.50			
12	1.63			
13	1.75			
14	1.88			
15	2.00			
16	2.13			

^{*} m³/h related to 1 bar abs. and 20°C


Depth Filter Type YG

Features:	Benefits:
Validated performance data acc. to ISO 12500-1 and ISO 5011	Reliable reaching of the compressed air quality according to ISO 8573-1
Intelligent total concept	Flow range, filtration grades, efficiencies and available options perfectly meet requirements of air purification
Support sleeve made of stainless steel meshed grid	Protection of the filter media against pressure shocks, good protection against corrosion

Materials:				
Filter media	Polyester fibre fleece			
Coalescense sleeve	Polyurethane			
Inner and outer support sleeves	Stainless steel 1.4301 / 304			
End caps	Aluminium			
O-Rings	Perbunan: silicone free and free of compound (Standard)			
Bonding	Polyurethane			

Validation:
Validation of high-effiency filters
acc.to ISO 12500-1 (oil) and
ISO 5011 (particles)

Particle retention rate related to ISO Finedust	Oil retention rate acc. to ISO 12500-1	Residual oil content at an inlet concentration of		
			10 mg/Nm ³	3 mg/Nm ³
η (YG) = 90%	η (YG) = 82%	m _{Oil} (YG) [mg/Nm ³]	< 2	< 0.6

